Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
JAMA Netw Open ; 7(3): e242684, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38517441

RESUMEN

Importance: Surgery with complete tumor resection remains the main treatment option for patients with breast cancer. Yet, current technologies are limited in providing accurate assessment of breast tissue in vivo, warranting development of new technologies for surgical guidance. Objective: To evaluate the performance of the MasSpec Pen for accurate intraoperative assessment of breast tissues and surgical margins based on metabolic and lipid information. Design, Setting, and Participants: In this diagnostic study conducted between February 23, 2017, and August 19, 2021, the mass spectrometry-based device was used to analyze healthy breast and invasive ductal carcinoma (IDC) banked tissue samples from adult patients undergoing breast surgery for ductal carcinomas or nonmalignant conditions. Fresh-frozen tissue samples and touch imprints were analyzed in a laboratory. Intraoperative in vivo and ex vivo breast tissue analyses were performed by surgical staff in operating rooms (ORs) within 2 different hospitals at the Texas Medical Center. Molecular data were used to build statistical classifiers. Main Outcomes and Measures: Prediction results of tissue analyses from classification models were compared with gross assessment, frozen section analysis, and/or final postoperative pathology to assess accuracy. Results: All data acquired from the 143 banked tissue samples, including 79 healthy breast and 64 IDC tissues, were included in the statistical analysis. Data presented rich molecular profiles of healthy and IDC banked tissue samples, with significant changes in relative abundances observed for several metabolic species. Statistical classifiers yielded accuracies of 95.6%, 95.5%, and 90.6% for training, validation, and independent test sets, respectively. A total of 25 participants enrolled in the clinical, intraoperative study; all were female, and the median age was 58 years (IQR, 44-66 years). Intraoperative testing of the technology was successfully performed by surgical staff during 25 breast operations. Of 273 intraoperative analyses performed during 25 surgical cases, 147 analyses from 22 cases were subjected to statistical classification. Testing of the classifiers on 147 intraoperative mass spectra yielded 95.9% agreement with postoperative pathology results. Conclusions and Relevance: The findings of this diagnostic study suggest that the mass spectrometry-based system could be clinically valuable to surgeons and patients by enabling fast molecular-based intraoperative assessment of in vivo and ex vivo breast tissue samples and surgical margins.


Asunto(s)
Neoplasias de la Mama , Adulto , Femenino , Humanos , Persona de Mediana Edad , Masculino , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/cirugía , Neoplasias de la Mama/patología , Márgenes de Escisión , Mama/cirugía , Mama/patología , Mastectomía , Espectrometría de Masas
2.
J Pharm Biomed Anal ; 243: 116082, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38461636

RESUMEN

BACKGROUND: Venlafaxine (VEN) and its O-demethylated metabolite, O-desmethylvenlafaxine (ODV), are commonly prescribed serotonin-norepinephrine reuptake inhibitors, approved for the treatment of depression and anxiety. Both are metabolized to inactive metabolites via cytochrome P450 enzymes. While previous studies have focused on quantifying VEN and ODV, bioanalytical methods for the simultaneous measurement of all metabolites are needed to fully characterize the pharmacology of VEN and ODV. METHODS: K2EDTA plasma was spiked with VEN, ODV, N-desmethylvenlafaxine (NDV), N,O-didesmethylvenlafaxine (NODDV), and N,N-didesmethylvenlafaxine (NNDDV). Drugs and metabolites were extracted via protein precipitation and quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The multiplexed assay was validated in accordance with regulatory recommendations, and evaluated in remnant plasma samples from persons prescribed venlafaxine. RESULTS: The analytical measuring range for venlafaxine and all four metabolites was 5-800 ng/mL. Standard curves were generated via weighted quadratic (NNDDV) or linear (VEN, ODV, NDV, NODDV) regression of calibrators. Inter-assay imprecision was between 1.9-9.3% for all levels of all analytes. Minor matrix effects were observed, and both recovery efficiency and process efficiency were >96% for all analytes. All other assay validation assessments met acceptance criteria. Drug concentrations measured from remnant plasma specimens obtained from patients with current venlafaxine prescriptions (37.5-450 mg/day) yielded NDDV, NDV, and NODDV metabolite concentrations in 6/21, 14/21, and 20/21 samples, respectively. The ratio of active to inactive analytes ranged from 0.74 to 14.5, with a median of 6.39. CONCLUSIONS: An efficient and accurate LC-MS/MS method was developed and validated for the quantification of VEN, ODV, and all three inactive metabolites in plasma. The assay met all acceptance criteria, and may be used in future studies of the pharmacokinetics of these drugs.


Asunto(s)
Ciclohexanoles , Espectrometría de Masas en Tándem , Humanos , Clorhidrato de Venlafaxina , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Ciclohexanoles/química , Ciclohexanoles/farmacocinética , Succinato de Desvenlafaxina , Inhibidores Selectivos de la Recaptación de Serotonina
3.
J Pharm Biomed Anal ; 235: 115629, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37619293

RESUMEN

BACKGROUND: Direct acting antiviral (DAA) therapies are effective in the treatment and management of chronic HCV infections. Glecaprevir (GLE) and pibrentasvir (PIB) are pangenotypic DAAs that are delivered alone or as a fixed-dose oral formulation to treat chronic HCV infections with or without cirrhosis. Sensitive and dynamic bioanalytical assays are needed to understand the pharmacology of GLE and PIB. METHODS: Drug free K2EDTA plasma was spiked with GLE, PIB, and their internal standards. Drugs were extracted from plasma via protein precipitation, and subsequently quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The method was validated according to regulatory recommendations, and evaluated in remnant plasma samples from individuals prescribed GLE and PIB. RESULTS: The analytical measuring ranges for GLE and PIB were 0.25-2000 ng/mL and 0.25-1000 ng/mL, respectively. The method showed acceptable accuracy and precision for both DAAs. GLE and PIB in plasma were stable following six freeze thaw cycles and at room temperature for up to 67 h. All analytes were stable in whole blood incubated at room temperature for 24 h, and at 40 °C and 100% humidity for 2 h. Negligible percent matrix effects were observed for PIB and PIB-IS across the measuring range of the assay. Significant ion suppression was observed for GLE, with an average matrix effects of 27.9%. However, relative matrix effects were < 6.3% between drug and internal standard, and deemed acceptable. Assay validation assessments in alternative matrices also met acceptance criteria. Both DAAs were successfully measured in remnant plasma samples from individuals administered GLE and PIB. CONCLUSIONS: An LC-MS/MS method for GLE and PIB quantification in plasma has been developed and validated. The assay met acceptable performance criteria and may be used in downstream applications to characterize DAA pharmacology for HCV treatment.


Asunto(s)
Antivirales , Hepatitis C Crónica , Humanos , Cromatografía Liquida , Espectrometría de Masas en Tándem
4.
JAMA Surg ; 158(10): 1050-1059, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37531134

RESUMEN

Importance: Intraoperative identification of tissues through gross inspection during thyroid and parathyroid surgery is challenging yet essential for preserving healthy tissue and improving outcomes for patients. Objective: To evaluate the performance and clinical applicability of the MasSpec Pen (MSPen) technology for discriminating thyroid, parathyroid, and lymph node tissues intraoperatively. Design, Setting, and Participants: In this diagnostic/prognostic study, the MSPen was used to analyze 184 fresh-frozen thyroid, parathyroid, and lymph node tissues in the laboratory and translated to the operating room to enable in vivo and ex vivo tissue analysis by endocrine surgeons in 102 patients undergoing thyroidectomy and parathyroidectomy procedures. This diagnostic study was conducted between August 2017 and March 2020. Fresh-frozen tissues were analyzed in a laboratory. Clinical analyses occurred in an operating room at an academic medical center. Of the analyses performed on 184 fresh-frozen tissues, 131 were included based on sufficient signal and postanalysis pathologic diagnosis. From clinical tests, 102 patients undergoing surgery were included. A total of 1015 intraoperative analyses were performed, with 269 analyses subject to statistical classification. Statistical classifiers for discriminating thyroid, parathyroid, and lymph node tissues were generated using training sets comprising both laboratory and intraoperative data and evaluated on an independent test set of intraoperative data. Data were analyzed from July to December 2022. Main Outcomes and Measures: Accuracy for each tissue type was measured for classification models discriminating thyroid, parathyroid, and lymph node tissues using MSPen data compared to gross analysis and final pathology results. Results: Of the 102 patients in the intraoperative study, 80 were female (78%) and the median (IQR) age was 52 (42-66) years. For discriminating thyroid and parathyroid tissues, an overall accuracy, defined as agreement with pathology, of 92.4% (95% CI, 87.7-95.4) was achieved using MSPen data, with 82.6% (95% CI, 76.5-87.4) accuracy achieved for the independent test set. For distinguishing thyroid from lymph node and parathyroid from lymph node, overall training set accuracies of 97.5% (95% CI, 92.8-99.1) and 96.1% (95% CI, 91.2-98.3), respectively, were achieved. Conclusions and Relevance: In this study, the MSPen showed high performance for discriminating thyroid, parathyroid, and lymph node tissues intraoperatively, suggesting this technology may be useful for providing near real-time feedback on tissue type to aid in surgical decision-making.


Asunto(s)
Glándulas Paratiroides , Glándula Tiroides , Humanos , Femenino , Persona de Mediana Edad , Anciano , Masculino , Glándulas Paratiroides/cirugía , Glándula Tiroides/cirugía , Paratiroidectomía , Tiroidectomía/métodos , Pronóstico
5.
Clin Biochem ; 115: 81-85, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36027943

RESUMEN

Appropriate specimen collection and storage is essential to preserve sample integrity and ensure accurate test results. The default collection containers for blood drug concentrations are tubes without gel separators to avoid possible drug adsorption. However, routine chemistry tests are generally collected in gel separator tubes due to their convenient transport and processing; collection of an additional gel-free tube is often required for drug measurements. Citrated whole blood was pooled, spiked with drug, and transferred to three tubes (red, SST gold, RST orange) containing calcium chloride. Blood was allowed to clot, centrifuged and stored at ambient temperature (24 h) or refrigerated (7 days). At defined times, serum drug concentrations were determined (Roche cobas c502). Based on these results, specimen collection requirements were updated to allow serum separator tubes for 17 assays. Of the 21 assays evaluated, 18 displayed acceptable stability in both gel-containing tubes (acetaminophen, amikacin, carbamazepine, digoxin, ethanol, gentamicin, lamotrigine, levetiracetam, lithium, methotrexate, phenobarbital, phenytoin, salicylate, theophylline, tobramycin, valproic acid, vancomycin, voriconazole). Three drugs displayed strong decreases in measured concentrations after storage in one or both gel-containing tubes (total tricyclics, lidocaine, and free phenytoin). Following adoption of gel-containing tubes, 94% of the five most frequently ordered drug monitoring tests in the Emergency Department were collected in serum separator tubes. Evaluation of the stability and accuracy of commonly monitored drugs revealed that the majority were not affected by exposure to gel separator material under conditions similar to outpatient clinic storage, courier transport, and laboratory storage. Expanding the collection requirements for appropriate drugs to include gel separator tubes decreases the number of specimens drawn and the complexity of laboratory workflows.


Asunto(s)
Acetaminofén , Fenitoína , Humanos , Amicacina , Benzodiazepinas , Bioensayo
6.
Metabolites ; 12(11)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36355139

RESUMEN

The COVID-19 pandemic boosted the development of diagnostic tests to meet patient needs and provide accurate, sensitive, and fast disease detection. Despite rapid advancements, limitations related to turnaround time, varying performance metrics due to different sampling sites, illness duration, co-infections, and the need for particular reagents still exist. As an alternative diagnostic test, we present urine analysis through flow-injection-tandem mass spectrometry (FIA-MS/MS) as a powerful approach for COVID-19 diagnosis, targeting the detection of amino acids and acylcarnitines. We adapted a method that is widely used for newborn screening tests on dried blood for urine samples in order to detect metabolites related to COVID-19 infection. We analyzed samples from 246 volunteers with diagnostic confirmation via PCR. Urine samples were self-collected, diluted, and analyzed with a run time of 4 min. A Lasso statistical classifier was built using 75/25% data for training/validation sets and achieved high diagnostic performances: 97/90% sensitivity, 95/100% specificity, and 95/97.2% accuracy. Additionally, we predicted on two withheld sets composed of suspected hospitalized/symptomatic COVID-19-PCR negative patients and patients out of the optimal time-frame collection for PCR diagnosis, with promising results. Altogether, we show that the benchmarked FIA-MS/MS method is promising for COVID-19 screening and diagnosis, and is also potentially useful after the peak viral load has passed.

7.
J Am Chem Soc ; 143(36): 14622-14634, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34486374

RESUMEN

Structural characterization of glycerophospholipids beyond the fatty acid level has become a major endeavor in lipidomics, presenting an opportunity to advance the understanding of the intricate relationship between lipid metabolism and disease state. Distinguishing subtle lipid structural features, however, remains a major challenge for high-throughput workflows that implement traditional tandem mass spectrometry (MS/MS) techniques, stunting the molecular depth of quantitative strategies. Here, reversed phase liquid chromatography is coupled to parallel reaction mass spectrometry utilizing the double bond localization capabilities of ultraviolet photodissociation (UVPD) mass spectrometry to produce double bond isomer specific responses that are leveraged for relative quantitation. The strategy provides lipidomic characterization at the double bond level for phosphatidylcholine phospholipids from biological extracts. In addition to quantifying monounsaturated lipids, quantitation of phospholipids incorporating isomeric polyunsaturated fatty acids is also achieved. Using this technique, phosphatidylcholine isomer ratios are compared across human normal and tumor breast tissue to reveal significant structural alterations related to disease state.


Asunto(s)
Fosfatidilcolinas/análisis , Animales , Mama/química , Neoplasias de la Mama/química , Bovinos , Cromatografía de Fase Inversa , Huevos , Ácidos Grasos Insaturados/química , Humanos , Isomerismo , Lipidómica/métodos , Hígado/química , Espectrometría de Masas/métodos , Fosfatidilcolinas/química , Rayos Ultravioleta
8.
Anal Chem ; 93(37): 12582-12593, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34432430

RESUMEN

The outbreak of COVID-19 has created an unprecedent global crisis. While the polymerase chain reaction (PCR) is the gold standard method for detecting active SARS-CoV-2 infection, alternative high-throughput diagnostic tests are of a significant value to meet universal testing demands. Here, we describe a new design of the MasSpec Pen technology integrated to electrospray ionization (ESI) for direct analysis of clinical swabs and investigate its use for COVID-19 screening. The redesigned MasSpec Pen system incorporates a disposable sampling device refined for uniform and efficient analysis of swab tips via liquid extraction directly coupled to an ESI source. Using this system, we analyzed nasopharyngeal swabs from 244 individuals including symptomatic COVID-19 positive, symptomatic negative, and asymptomatic negative individuals, enabling rapid detection of rich lipid profiles. Two statistical classifiers were generated based on the lipid information acquired. Classifier 1 was built to distinguish symptomatic PCR-positive from asymptomatic PCR-negative individuals, yielding a cross-validation accuracy of 83.5%, sensitivity of 76.6%, and specificity of 86.6%, and validation set accuracy of 89.6%, sensitivity of 100%, and specificity of 85.3%. Classifier 2 was built to distinguish symptomatic PCR-positive patients from negative individuals including symptomatic PCR-negative patients with moderate to severe symptoms and asymptomatic individuals, yielding a cross-validation accuracy of 78.4%, specificity of 77.21%, and sensitivity of 81.8%. Collectively, this study suggests that the lipid profiles detected directly from nasopharyngeal swabs using MasSpec Pen-ESI mass spectrometry (MS) allow fast (under a minute) screening of the COVID-19 disease using minimal operating steps and no specialized reagents, thus representing a promising alternative high-throughput method for screening of COVID-19.


Asunto(s)
COVID-19 , Pruebas Diagnósticas de Rutina , Humanos , Nasofaringe , SARS-CoV-2 , Sensibilidad y Especificidad , Manejo de Especímenes
9.
Clin Chem ; 67(9): 1271-1280, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34263289

RESUMEN

BACKGROUND: Intraoperative tissue analysis and identification are critical to guide surgical procedures and improve patient outcomes. Here, we describe the clinical translation and evaluation of the MasSpec Pen technology for molecular analysis of in vivo and freshly excised tissues in the operating room (OR). METHODS: An Orbitrap mass spectrometer equipped with a MasSpec Pen interface was installed in an OR. A "dual-path" MasSpec Pen interface was designed and programmed for the clinical studies with 2 parallel systems that facilitated the operation of the MasSpec Pen. The MasSpec Pen devices were autoclaved before each surgical procedure and were used by surgeons and surgical staff during 100 surgeries over a 12-month period. RESULTS: Detection of mass spectral profiles from 715 in vivo and ex vivo analyses performed on thyroid, parathyroid, lymph node, breast, pancreatic, and bile duct tissues during parathyroidectomies, thyroidectomies, breast, and pancreatic neoplasia surgeries was achieved. The MasSpec Pen enabled gentle extraction and sensitive detection of various molecular species including small metabolites and lipids using a droplet of sterile water without causing apparent tissue damage. Notably, effective molecular analysis was achieved while no limitations to sequential histologic tissue analysis were identified and no device-related complications were reported for any of the patients. CONCLUSIONS: This study shows that the MasSpec Pen system can be successfully incorporated into the OR, allowing direct detection of rich molecular profiles from tissues with a seconds-long turnaround time that could be used to inform surgical and clinical decisions without disrupting tissue analysis workflows.


Asunto(s)
Neoplasias Pancreáticas , Humanos , Espectrometría de Masas , Paratiroidectomía , Glándula Tiroides
10.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34260388

RESUMEN

Intraoperative delineation of tumor margins is critical for effective pancreatic cancer surgery. Yet, intraoperative frozen section analysis of tumor margins is a time-consuming and often challenging procedure that can yield confounding results due to histologic heterogeneity and tissue-processing artifacts. We have previously described the development of the MasSpec Pen technology as a handheld mass spectrometry-based device for nondestructive tissue analysis. Here, we evaluated the usefulness of the MasSpec Pen for intraoperative diagnosis of pancreatic ductal adenocarcinoma based on alterations in the metabolite and lipid profiles in in vivo and ex vivo tissues. We used the MasSpec Pen to analyze 157 banked human tissues, including pancreatic ductal adenocarcinoma, pancreatic, and bile duct tissues. Classification models generated from the molecular data yielded an overall agreement with pathology of 91.5%, sensitivity of 95.5%, and specificity of 89.7% for discriminating normal pancreas from cancer. We built a second classifier to distinguish bile duct from pancreatic cancer, achieving an overall accuracy of 95%, sensitivity of 92%, and specificity of 100%. We then translated the MasSpec Pen to the operative room and predicted on in vivo and ex vivo data acquired during 18 pancreatic surgeries, achieving 93.8% overall agreement with final postoperative pathology reports. Notably, when integrating banked tissue data with intraoperative data, an improved agreement of 100% was achieved. The result obtained demonstrate that the MasSpec Pen provides high predictive performance for tissue diagnosis and compatibility for intraoperative use, suggesting that the technology may be useful to guide surgical decision-making during pancreatic cancer surgeries.


Asunto(s)
Tecnología Biomédica , Márgenes de Escisión , Espectrometría de Masas , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/cirugía , Anciano , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/cirugía , Conducto Colédoco/patología , Conducto Colédoco/cirugía , Femenino , Humanos , Cuidados Intraoperatorios , Masculino , Persona de Mediana Edad , Páncreas/patología , Páncreas/cirugía , Neoplasias Pancreáticas/patología , Estadística como Asunto
11.
Mass Spectrom Rev ; 40(5): 692-720, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33094861

RESUMEN

Developments in mass spectrometry technologies have driven a widespread interest and expanded their use in cancer-related research and clinical applications. In this review, we highlight the developments in mass spectrometry methods and instrumentation applied to direct tissue analysis that have been tailored at enhancing performance in clinical research as well as facilitating translation and implementation of mass spectrometry in clinical settings, with a focus on cancer-related studies. Notable studies demonstrating the capabilities of direct mass spectrometry analysis in biomarker discovery, cancer diagnosis and prognosis, tissue analysis during oncologic surgeries, and other clinically relevant problems that have the potential to substantially advance cancer patient care are discussed. Key challenges that need to be addressed before routine clinical implementation including regulatory efforts are also discussed. Overall, the studies highlighted in this review demonstrate the transformative potential of mass spectrometry technologies to advance clinical research and care for cancer patients. © 2020 Wiley Periodicals, Inc. Mass Spec Rev.


Asunto(s)
Neoplasias , Humanos , Espectrometría de Masas
12.
J Am Soc Mass Spectrom ; 31(2): 418-428, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-32031393

RESUMEN

Mass spectrometry (MS) has emerged as a valuable technology for molecular and spatial evaluation of biological samples. Ambient ionization MS techniques, in particular, allow direct analysis of tissue samples with minimal pretreatment. Here, we describe the design and optimization of an alternative ambient liquid extraction MS approach for metabolite and lipid profiling and imaging from biological samples. The system combines a piezoelectric picoliter dispenser to form solvent nanodroplets onto the sample surface with controlled and tunable spatial resolution and a conductive capillary to directly aspirate/ionize the nanodroplets for efficient analyte transmission and detection. Using this approach, we performed spatial profiling of mouse brain tissue sections with different droplet sizes (390, 420, and 500 µm). MS analysis of normal and cancerous human brain and ovarian tissues yielded rich metabolic profiles that were characteristic of disease state and enabled visualization of tissue regions with different histologic composition. This method was also used to analyze the lipid profiles of human ovarian cell lines. Overall, our results demonstrate the capabilities of this system for spatially controlled MS analysis of biological samples.


Asunto(s)
Química Encefálica , Lípidos/análisis , Espectrometría de Masas/instrumentación , Neoplasias Ováricas/química , Ovario/química , Animales , Diseño de Equipo , Femenino , Humanos , Espectrometría de Masas/métodos , Metaboloma , Ratones , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Ovario/metabolismo , Ovario/patología
13.
Anal Chem ; 90(19): 11324-11332, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30170496

RESUMEN

The histological and molecular subtypes of breast cancer demand distinct therapeutic approaches. Invasive ductal carcinoma (IDC) is subtyped according to estrogen-receptor (ER), progesterone-receptor (PR), and HER2 status, among other markers. Desorption-electrospray-ionization-mass-spectrometry imaging (DESI-MSI) is an ambient-ionization MS technique that has been previously used to diagnose IDC. Aiming to investigate the robustness of ambient-ionization MS for IDC diagnosis and subtyping over diverse patient populations and interlaboratory use, we report a multicenter study using DESI-MSI to analyze samples from 103 patients independently analyzed in the United States and Brazil. The lipid profiles of IDC and normal breast tissues were consistent across different patient races and were unrelated to country of sample collection. Similar experimental parameters used in both laboratories yielded consistent mass-spectral data in mass-to-charge ratios ( m/ z) above 700, where complex lipids are observed. Statistical classifiers built using data acquired in the United States yielded 97.6% sensitivity, 96.7% specificity, and 97.6% accuracy for cancer diagnosis. Equivalent performance was observed for the intralaboratory validation set (99.2% accuracy) and, most remarkably, for the interlaboratory validation set independently acquired in Brazil (95.3% accuracy). Separate classification models built for ER and PR statuses as well as the status of their combined hormone receptor (HR) provided predictive accuracies (>89.0%), although low classification accuracies were achieved for HER2 status. Altogether, our multicenter study demonstrates that DESI-MSI is a robust and reproducible technology for rapid breast-cancer-tissue diagnosis and therefore is of value for clinical use.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Imagen Molecular , Espectrometría de Masa por Ionización de Electrospray , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Grupos Raciales , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo
14.
Anal Chem ; 90(17): 10100-10104, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30080398

RESUMEN

Desorption electrospray ionization (DESI) mass spectrometry imaging has become a powerful strategy for analysis of tissue sections, enabling differentiation of normal and diseased tissue based on changes in the lipid profiles. The most common DESI workflow involves collection of MS1 spectra as the DESI spray is rastered over a tissue section. Relying on MS1 spectra inherently limits the ability to differentiate isobaric and isomeric species or evaluate variations in the relative abundances of key isomeric lipids, such as double-bond positional isomers which may distinguish normal and diseased tissues. Here, 193 nm ultraviolet photodissociation (UVPD), a technique capable of differentiating double-bond positional isomers, is coupled with DESI to map differences in the double-bond isomer composition in tissue sections in a fast, high throughput manner compatible with imaging applications.


Asunto(s)
Fosfolípidos/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Rayos Ultravioleta , Isomerismo
15.
Anal Chem ; 90(13): 7785-7789, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29800516

RESUMEN

Analysis of large biomolecules including proteins has proven challenging using ambient ionization mass spectrometry imaging techniques. Here, we have successfully optimized desorption electrospray ionization mass spectrometry (DESI-MS) to detect intact proteins directly from tissue sections and further integrated DESI-MS to a high field asymmetric waveform ion mobility (FAIMS) device for protein imaging. Optimized DESI-FAIMS-MS parameters were used to image mouse kidney, mouse brain, and human ovarian and breast tissue samples, allowing detection of 11, 16, 14, and 16 proteoforms, respectively. Identification of protein species detected by DESI-MS was performed on-tissue by top-down ultraviolet photodissociation (UVPD) and collision induced dissociation (CID) as well as using tissue extracts by bottom-up CID and top-down UVPD. Our results demonstrate that DESI-MS imaging is suitable for the analysis of the distribution of proteins within biological tissue sections.


Asunto(s)
Imagen Molecular/métodos , Proteínas/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Neoplasias de la Mama/metabolismo , Humanos , Ratones
16.
Sci Transl Med ; 9(406)2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28878011

RESUMEN

Conventional methods for histopathologic tissue diagnosis are labor- and time-intensive and can delay decision-making during diagnostic and therapeutic procedures. We report the development of an automated and biocompatible handheld mass spectrometry device for rapid and nondestructive diagnosis of human cancer tissues. The device, named MasSpec Pen, enables controlled and automated delivery of a discrete water droplet to a tissue surface for efficient extraction of biomolecules. We used the MasSpec Pen for ex vivo molecular analysis of 20 human cancer thin tissue sections and 253 human patient tissue samples including normal and cancerous tissues from breast, lung, thyroid, and ovary. The mass spectra obtained presented rich molecular profiles characterized by a variety of potential cancer biomarkers identified as metabolites, lipids, and proteins. Statistical classifiers built from the histologically validated molecular database allowed cancer prediction with high sensitivity (96.4%), specificity (96.2%), and overall accuracy (96.3%), as well as prediction of benign and malignant thyroid tumors and different histologic subtypes of lung cancer. Notably, our classifier allowed accurate diagnosis of cancer in marginal tumor regions presenting mixed histologic composition. Last, we demonstrate that the MasSpec Pen is suited for in vivo cancer diagnosis during surgery performed in tumor-bearing mouse models, without causing any observable tissue harm or stress to the animal. Our results provide evidence that the MasSpec Pen could potentially be used as a clinical and intraoperative technology for ex vivo and in vivo cancer diagnosis.


Asunto(s)
Espectrometría de Masas/instrumentación , Neoplasias/diagnóstico , Especificidad de Órganos , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Cuidados Intraoperatorios , Ratones Desnudos , Técnicas de Diagnóstico Molecular , Neoplasias/cirugía , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...